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Abstract

One of the mayor drawbacks of waveform propagation us-
ing finite differences (FD) is the intense computational ef-
fort required to solve the wave equation. The computational
cost is directly proportional to the number of grid points of
the discretized medium, and may become prohibitive for
large scale models and fine grid meshes. This motivated
the development of strategies to reduce the computational
cost of forward modeling, such as the so-called expand-
ing box (EB) methods. An EB method relies on solving
the involved equations within a growing area that encloses
the perturbed grid points only, which is delimited by the
source and the expected most-advanced wavefront. As
the wavefield propagates, this area expands with time until
all the grid points are perturbed encompassing the whole
space domain. The method avoids unnecessary calcula-
tions where the wavefield has not reached yet. In this con-
text, we evaluate the impact of using an EB algorithm when
modeling microseismic data, where frequencies are high
and the required sampling interval is very small. We con-
sider a FD elastodynamic wave equation modeling and typ-
ical microseismic borehole monitoring scenarios. We ana-
lyze and evaluate the expected execution time saving of the
EB case in comparison with the conventional FD method
by means of an homogeneous 2D model and typical mi-
croseismic source-receiver geometries, taking into account
both P and SV-wave phase arrivals. Results using Julia
programming language show that execution time saving
can be as high as 30%.

Introduction

Forward seismic modeling is a powerful tool for many seis-
mic applications, as it allows studying how media prop-
erties affect the waveform propagation. In microseismic
studies, waveform modeling has been widely used for var-
ious mining and hydrocarbon exploration applications. For
instance, Usher et al. (2013) use a finite difference (FD)
method to examine the influence of both the velocity model
and the source frequency on waveforms and event loca-
tions. Roussel et al. (2011) propose a poroelastic 3D model
to simulate the interaction between fractures in horizontal
well-bores in order to obtain optimum fracture spacing val-
ues and investigate the fracturing sequence. Folesky et al.

(2015) present a microseismic rupture propagation imaging
method based on a FD modeling of a synthetically gener-
ated seismogram. Also, Meek et al. (2015) model seismic
waves with different source mechanisms with a 3D elastic
FD algorithm to determine the sensitivity of microseismic at-
tributes, underlying geology parameters, and array configu-
ration. Both Pike (2014) and Rodriguez-Pradilla and Eaton
(2018) show extensive and detailed microseismic studies
and interpretations based on FD modeled data. In another
application, Vavry¢uk and Kiihn (2012) make use of a 3D
FD viscoelastic code to perform a two-step time-frequency
moment tensor inversion in a real mining environment.

Using an explicit FD technique to simulate a wavefield prop-
agating through the underlying media commonly requires
solving the elastodynamic wave equation in the space-time
domain. The model is usually regarded as a box in 2D,
or as a cube in 3D, which must enclose the source and
the geophones locations. In time, the signal is generally
calculated from the source origin time and propagated un-
til the perturbation reaches the whole sensor array. Typ-
ical source-receiver distances can vary from tens to hun-
dreds of meters. The total time of the simulations, on the
other hand, depends on the acquisition geometry and ve-
locity model. Usually, because in microseismic studies fre-
quencies are higher than those of conventional seismic pro-
cesses, proper microseismic modeling requires a fine sam-
pling in both the time and space domains. For these rea-
sons, the intense computational effort required to solve the
elastodynamic wave equations becomes one of the major
drawbacks. In other words, microseismic forward model-
ing involves very fine grids and small sampling intervals
that lead to very high computational costs, which in some
projects may became prohibitive, specially for 3D scenar-
ios.

In order to reduce the computational times, we can seek
to adjust the model to the smallest possible size that still
encloses the perturbed part of the medium. Unfortunately,
this technique may lead to an undesirable effect, which is
caused by the wavefront reaching the mesh boundary and
reflecting back into the modeled space, eventually masking
the signal of interest. The simplest way to avoid this inter-
ference is enlarging the mesh size, which delays the border
effect to larger times, but of course at the expense of an in-
creased computational cost. To tackle with this issue, many
computational techniques have been developed in order to
mitigate these artificial reflected waves without the need of
increasing the grid size. The most common approaches are
the so-called absorbing boundary conditions (ABS) (Clay-
ton and Engquist, 1977; Stacey, 1988) and, more recently,
the perfectly matched layers (PML) (Berenger, 1994; Ko-
matitsch and Martin, 2007). Regardless of the choice of
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method for dealing with the borders, in many applications
is still needed to decrease the computational cost that is
intrinsically associated with the space domain size.

In this work, we evaluate the performance a simple expand-
ing box (EB) algorithm that considerably reduces the com-
putational costs in discrete forward modeling by taking ad-
vantage of the causality nature of the problem. In what fol-
lows, we describe the EB method and show the execution
time saving that can be expected in the case of a 2D homo-
geneous model of various sizes which are typical in micro-
seismic monitoring scenarios. The results show that signif-
icant execution times can be saved by using a dynamically
adaptive model space at each time step of the FD solution.
The method can be readily extended to 3D scenarios and
multi-layered heterogeneous media.

Theory

Without loss of generality, we expose the principles of the
EB strategy using the 2D first-order hyperbolic formula-
tion of the elastodynamic problem. Readers are referred
to Madariaga (1976) or Virieux (1986) for details on this
formulation. Typical methods for solving these equations
by means of a time-explicit FD technique involve updating,
over the entire discretized grid and for each time step, the
unknown velocity field, v=(vx, v;), and the stress tensors,
0=(0xx,022,0xz). At any given time step, taking into ac-
count the causality nature of the problem, it is clear that the
medium can only be excited within the region delimited by
the wavefront. That is, for any given time step, any point of
the discretized medium that lies beyond the current wave-
front, remains unperturbed.

Expanding box algorithm

At each time step, it seems reasonable to update the wave-
field only within a region (box) that encloses the wave-
front that would be generated by a wave propagating with
the fastest velocity of the medium. As time increases, the
wavefront propagates outwards from the source point and,
therefore, the box must expand. This strategy continues
until the expanding box (EB) reaches all boundaries of the
grid. This EB can be designed in a simple fashion. Even
for the most complex media, we can assume that at any
time ¢, a wavefront moving away from a point source is
entirely contained within a circle (or sphere in 3D) of ra-
dius r(t) = Vmaxt, where vy is the fastest velocity of the
medium. Thus, it suffices to define the EB such that the
half-length of its sides equal to d(t) = r(t) + ro, where rg
is an initial distance set to prevent the wavefront to be in
contact with the box limits and to avoid undesired bound-
ary artifacts.

For simplicity, consider an 2D homogeneous medium with
velocity v, uniformly discretized into Nx x N, grid points with
Ax = Az, and a source located at the grid node (/s,Js).
The grid points corresponding to the left and right sides of
the EB at time f can be determined using:

I (f) = max {1, ls — {%J } and
Ir(t) = min {Nx, Is + {%J },

where the subscripts L and R refer to the left and right sides,
respectively, and | -] takes the integer part of its argument.
Likewise, similar expressions can be drawn for the sides
expanding upwards and downwards, which we write as /;(t)
and Ip(t). It should be noted that the EB is not restricted to
be square. One may choose to build a rectangular EB by
considering different velocities in the x and z directions, or
simply by setting Ax # Az. In the Examples section we
will show an example of a square EB containing the P and
SV-wavefronts at every time-step for a particular case.

(1)

CPU execution time

If we define Top to be the time taken by the CPU to perform
all the required operations to update the velocity and stress
for a single grid point at one single time-step, the total time
for the whole grid at any given time-step can be estimated
by means of T(t) ~ NxN; Top. In the EB method, we can
get an estimate of this time by means of

T(t) = Nx(t) Nz(t) Top7 (2)

where Ny (t) = In(t) — I.(t) < Ny and N (t) = Iy(t) — Ip(t) <
N; are the width and height of the EB at time ¢, respectively.
Clearly, T(t) < T(t), leading to CPU time savings.

Equation 2 is a time dependent function that is quadratic in
time, since both Ny (t) and N;(t) grow linearly with time. The
quadratic behavior holds until either the width or the height
of the EB (but not both) stops growing (i.e. either Ny (f) = Nx
or Nz(t) = N). At his point, T() grows linearly with time. As
soon as the EB cannot grow anymore in any one direction
(i.e. Nx(t) = Nx and N;(f) = N;), T(t) becomes constant
and equal to T(t).

Therefore, the CPU time saving at any given time-step t can
be estimated by means of

AT(t) = T(t) — T(t). (3)

By integrating T(t) and T(t) from t = 0, we can obtain the
corresponding total CPU times at time t. In particular, we
are interested in computing the relative CPU time saved
when the EB method is used instead of the standard FD
scheme that evaluates all grid points at every time-step.
This value can be estimated by means of

t
= 20870 g0,

S
=570

4)

The same idea presented for a 2D scenario can be ex-
tended to a rectangular EB for any non-homogeneous me-
dia, such as, for example, a 3D anisotropic layered media.
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Figure 1— Snapshots of the vx(x, z) (left) and v;(x, z) (right)
velocity fields for a model of size 500 x 500 showing the P-
and SV-wavefronts. The red star denotes the source and
the orange triangles denote the receivers.

Examples

In this section we evaluate the CPU time saving that can
be obtained using the EB algorithm by means of a 2D ho-
mogeneous isotropic model and a source-receiver geom-
etry that resembles a typical microseismic borehole array
monitoring scenario. We set the compressional and shear
velocities ¢, = 4000 m/s and ¢;s = ¢,/v/3 ~ 2300 m/s,
respectively, and a density p = 2700 kg/m®. For the
source, following Komatitsch and Martin (2007), we use the
derivative of a Gaussian pulse with a dominant frequency
fo = 100 Hz and shifted by to = 1.2/f, from t = 0 to guar-
antee null initial conditions. The point source is a veloc-
ity vector oriented 135° in the (x,z) plane and placed at
(Is,Js) = (0.15N,0.5N), where N = Ny = N, for the
sake of simplicity. We use a conservative uniform mesh
size with Ax = Az =0.5¢5/(10fy) ~ 1.15 m. Since we are
using a time explicit FD technique, the Courant-Friedrichs-
Lewy stability condition (Courant et al., 1928) demands a
time step Aty < Ax/(\@cp). Thus, to be safe, we set
At=10.9 Atcﬂ ~ 0.18 ms.

As for the boundary conditions, we use the convolutional
perfectly matched layer (C-PML) on all four sides of the
grid, following the recommendations given by Komatitsch
and Martin (2007) for a 2D model. We consider the Dirich-
let condition on the velocity vector (v = 0) for the external
edges of the model. Due to causality and because we as-
sume an initial state of equilibrium with v = 0, the limits of
the box ahead of the wavefront remain unperturbed at any
time and, so, we also impose Dirichlet condition over the
EB edges.

For the analysis, we consider eight different model sizes
N x N, with N varying from 500 to 1200, in steps of 100 grid
points. These model sizes also allow us to test different
source-receiver distances. In all cases, we place a vertical
receiver array at (x;,z) = (0.7 NAx,20 + (j — 1)Arz), j =
1...N,, with N, = 8 and Ar, =10 m.

Figure 1 shows snapshots of the v, and v, velocity fields at
some time step for the model of size 500 x 500, where the
P- and the SV-wavefronts are clearly visible. For the same
model, Figure 2 shows the corresponding traces recorded
by the geophone array. We repeated the simulations for the
eight model sizes considered, using an appropriate number
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Figure 2 — Traces recorded by the geophone vertical array
for a model of size 500 x 500, showing the P- and SV-wave
phases. Depth increases upwards with z = 0 on the grid
bottom.

of time-steps so that both the P- and SV-waveforms are fully
observed at the furthest receiver in all cases. We guaran-
tee this by estimating the minimum number of time-steps
required for the largest model, where the source-receiver
distance is about 980 m.

Figure 3 shows the normalized execution time

A T :ﬁ
Trom(f) = max {T(t)} T() ©)

for the considered models as a function of iteration (time-
steps). We observe four separate intervals where T(t) ex-
hibits different behaviors, depending on how the EB grows
in relation with the model boundaries (see Figure 4): (1)
For t € [0,t) the curve is quadratic, where t; is the time
required for the left side of the EB to reach the left model
boundary (i.e. I.(f) = 1). In this interval, neither Ig(t) and
1. (), nor Iy(t) and Ip(t) reached the model boundaries; (2)
For t € [t,t2), where t, is the time required for the upper
and lower sides of the EB to reach the upper and lower
model boundaries, the curve is quadratic, too, but less pro-
nounced because the area of the EB grows more slowly.
Note that for this particular case, since the source is placed
atJs = 0.5 N, both /y(t) and Ip(t) hit the model boundaries
simultaneously; (3) For t € [t2,t3), only Ig(t) continues to
expand until it reaches the right boundary at time 3 (i.e.
I(t) = N), and so T(t) exhibits a linear behavior; (4) As
expected, when Ig(t) reaches the right boundary at time
t , T(t) takes a constant value equal to T(t) for all sub-
sequent time-steps. The described situations represent a
simple case that illustrates how the EB grows and how T{(t)
behaves. Naturally, the actual behavior of T(t) in a differ-
ent scenario will depend on the velocity, the geometry/size
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Figure 3 — Normalized CPU times for various model sizes.

of the model, and the relative position of the source with
respect to the model boundaries.

Figure 5 shows the relative time saving S(t) for all the con-
sidered model sizes. Each simulation was run from t = 0
until the slowest wave (i.e. the SV-wave) was fully observed
at all the geophones. The smallest model required 1200 it-
erations while the largest model required about 2500. We
observe that the EB algorithm leads to CPU time savings
in the range of 20-30% with respect to a standard FD tech-
nique. Note that the larger the model, the more efficient
the EB becomes for the same number of iterations. As ex-
pected, S(f) has an asymptotic behavior towards zero. In
light of that, the benefits of the EB method dilutes if the inter-
est of the study is centered on modeling later phase arrivals
such as multiples or diffracted waves that may arise in com-
plex heterogeneous models. On the other hand, should the
modeling include only P-waves, the CPU savings might be
significantly larger than those observed in Figure 5, for the
required number of time-steps would be much smaller.

Finally, Figure 6 shows the normalized CPU time Tom(t)
and the actual execution time for the case with N = 500
using a standard PC and Julia programming language as
measured by means of the time() function. For a better
comparison, we also normalized this time by T(t). As ex-
pected, both curves are very similar. The small discrepan-
cies observed in Figure 6 can be attributed to internal pro-
cesses of the machine that are not captured by the time()
Julia function.

Conclusions

The adaptive expanding model space method studied in
this work shows considerable execution time saving for FD
modeling of a microseismic source propagating under null
Dirichlet boundary conditions. The relative improvement on
the computation times depends on the model size and num-
ber of time iterations considered. For typical microseismic
geometries, execution time saving can be up 30% when
compared against wave propagation FD modeling that con-
siders the whole space domain. The theoretical execution
time savings are in great agreement to those obtained by
running a FD modeling Julia code with the same param-
eters used for the theoretical computations. The expand-
ing model space method should be a routine technique for

00 100 200 300 400 0 100 200 300 400

Figure 4 — Propagation of the EB for a model of size
500 x 500 and a source placed at the grid point (75,250)
(red star). As the box expands, it reaches the model bound-
aries at different times (see text for details). At each itera-
tion, the velocity and stress need to be updated only within
the dark-gray regions, for the wavefield is expected to be
null beyond this area. For illustrative purposes, the orange
triangles denote the receivers.
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Figure 5 — S(t) for all the considered model sizes. The
number at the end of each curve indicates the times (in ms)
until equation 4 was computed.

any microseismic FD modeling application where computa-
tional costs are to be considered.

Seventeenth International Congress of the Brazilian Geophysical Society



BRUNINI, SABBIONE & VELIS 5

1.0

)

£

=08

[=}

.S

=]

g 0.6

X

5

=]

S04

&

g

8 0.2

Z — Actual CPU time

— Estimated CPU time

0'00 500 1000 1500 2000 2500

Iteration number

Figure 6 — Estimated and actual CPU times for N = 500.
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